Differentiation

Question Paper

Course	EdexcellGCSE Maths
Section	3. Sequences, Functions \& Graphs
Topic	Differentiation
Difficulty	Very Hard

Time allowed: 80
Score: /64
Percentage: /100

Question la

A curve, C, has equation $y=2 x^{2}+8 k^{2} x-3$ where k is a constant.
Show that when $k=0$, the turning point on C has coordinates $(0,-3)$.
[2 marks]

Question 1b

Show that when $\boldsymbol{k} \neq \mathbf{0}$, the turning point on C must have a negative \boldsymbol{x}-coordinate.

Question 1c

When $k \neq 0$ determine whether or not the y-coordinate of the turning point is negative.

Question 2

Part of the graph with equation $y=2 x^{4}-16 x^{2}+3$ is shown below.

The graph has three stationary points, indicated on the graph by points P, Q and R. Find the area of the triangle $P Q R$.

Question 3a

The diagram shows a cuboid with a square cross-section.

The sides of the square face are $x \mathrm{~cm}$ and the length of the cuboid is $y \mathrm{~cm}$.
The cuboid is to have a fixed surface area, A, of $25 \mathrm{~cm}^{2}$.
Show that the volume of the cuboid, $V \mathrm{~cm}^{3}$ is given by

$$
V=\frac{25}{4} x-\frac{1}{2} x^{3}
$$

Question 3b

Show that the value of x that maximises the volume of the cuboid is $\frac{5 \sqrt{6}}{6}$

Question 3c

Find the maximum volume of the cuboid, correct to 3 significant figures.

Question 4

A particle P moves along a straight line that passes through the fixed point O The displacement, x metres, of P from O at time t seconds, where $t \geqslant 0$, is given by

$$
x=4 t^{3}-27 t+8
$$

The direction of motion of P reverses when P is at the point A on the line. The acceleration of P at the instant when P is at A is a $\mathrm{m} / \mathrm{s}^{2}$.
Find the value of a.

Question 5

Two particles, P and Q, move along a straight line.
The fixed point O lies on this line.

The displacement of P from O at time t seconds is s metres, where

$$
s=t^{3}-4 t^{2}+5 t \quad \text { for } t>1
$$

The displacement of Q from O at time t seconds is x metres, where

$$
x=t^{2}-4 t+4 \quad \text { for } t>1
$$

Find the range of values of t where $t>1$ for which both particles are moving in the same direction along the straight line.
[6 marks]

Question 6

The point A is the only stationary point on the curve with equation $y=k x^{2}+\frac{16}{x}$ where k is a constant.
Given that the coordinates of A are $\left(\frac{2}{3}, a\right)$
find the value of a.
Show your working clearly.

$$
a=
$$

\qquad

Question 7

The curve \mathbf{C} has equation $y=a x^{3}+b x^{2}-12 x+6$ where a and b are constants.
The point A with coordinates $(2,-6)$ lies on \mathbf{C}.
The gradient of the curve at A is 16 .

Find the y coordinate of the point on the curve whose x coordinate is 3 .
Show clear algebraic working.

Question 8

A particle P is moving along a straight line.
The fixed point O lies on the line.

At time t seconds $(t \geqslant 0)$, the displacement of P from O is s metres where

$$
s=t^{3}-9 t^{2}+33 t-6
$$

Find the minimum speed of P.

Question 9a

$A B C E D$ is a five-sided shape.

$A B C D$ is a rectangle.
$C E D$ is an equilateral triangle.
$A B=x \mathrm{~cm} \quad B C=y \mathrm{~cm}$

The perimeter of $A B C E D$ is 100 cm .
The area of $A B C E D$ is $R \mathrm{~cm}^{2}$
Show that $R=\frac{x}{4}\left(200-[6-\sqrt{3}]_{X}\right)$

Question 9b

(i)

Find the value of X for which R has its maximum value.
Give your answer in the form $\frac{p}{q-\sqrt{3}}$ where p and q are integers.

$$
\begin{equation*}
x=. \tag{2}
\end{equation*}
$$

(ii)

Explain why the maximum value of R is given by this value of X.

Question 10

A particle moves along a straight line.
The fixed point O lies on this line.
The displacement of the particle from O at time t seconds, $t \geqslant 0$, is s metres where

$$
s=t^{3}+4 t^{2}-5 t+7
$$

At time T seconds the velocity of P is $V \mathrm{~m} / \mathrm{s}$ where $V \geqslant-5$
Find an expression for T in terms of V.
Give your expression in the form $\frac{-4+\sqrt{k+m V}}{3}$ where $k m$ and are integers to be found.

$$
T=
$$

\qquad

