Differentiation

Question Paper

Course	EdexcelIGCSEMaths
Section	3. Sequences, Functions & Graphs
Торіс	Differentiation
Difficulty	Very Hard

Time allowed:	80
Score:	/64
Percentage:	/100

Question la

A curve, C, has equation $y = 2x^2 + 8k^2x - 3$ where k is a constant.

Show that when k = 0, the turning point on C has coordinates (0, -3).

[2 marks]

Question 1b

Show that when $\mathbf{k} \neq \mathbf{0}$, the turning point on C must have a negative \mathbf{x} -coordinate.

[4 marks]

Question 1c

When $k \neq 0$ determine whether or not the y-coordinate of the turning point is negative.

[2 marks]

Question 2

Part of the graph with equation $y = 2x^4 - 16x^2 + 3$ is shown below.

The graph has three stationary points, indicated on the graph by points P, Q and R. Find the area of the triangle PQR.

[7 marks]

Question 3a

The diagram shows a cuboid with a square cross-section.

The sides of the square face are x cm and the length of the cuboid is y cm. The cuboid is to have a fixed surface area, A, of 25 cm². Show that the volume of the cuboid, $V \, {
m cm}^3$ is given by

$$V = \frac{25}{4}x - \frac{1}{2}x^3$$

[4 marks]

Question 3b

Show that the value of x that maximises the volume of the cuboid is $\frac{5\sqrt{6}}{6}$

[4 marks]

Question 3c

Find the maximum volume of the cuboid, correct to 3 significant figures.

[2 marks]

Question 4

A particle *P* moves along a straight line that passes through the fixed point *O* The displacement, *x* metres, of *P* from *O* at time t seconds, where $t \ge 0$, is given by

 $x = 4t^3 - 27t + 8$

The direction of motion of *P* reverses when *P* is at the point *A* on the line. The acceleration of *P* at the instant when *P* is at *A* is $a \text{ m/s}^2$. Find the value of *a*.

a =

[5 marks]

Question 5

Two particles, $P \, {\rm and} \, Q,$ move along a straight line. The fixed point O lies on this line.

The displacement of P from O at time t seconds is s metres, where

 $s = t^3 - 4t^2 + 5t$ for t > 1

The displacement of Q from O at time t seconds is x metres, where

 $x = t^2 - 4t + 4$ for t > 1

Find the range of values of t where t > 1 for which both particles are moving in the same direction along the straight line.

[6 marks]

Question 6

The point A is the only stationary point on the curve with equation $y = kx^2 + \frac{16}{x}$ where k is a constant.

Given that the coordinates of A are
$$\left(\frac{2}{3}, a\right)$$

find the value of *a*. Show your working clearly.

a =

[5 marks]

Question 7

The curve **C** has equation $y = ax^3 + bx^2 - 12x + 6$ where *a* and *b* are constants.

The point A with coordinates (2, -6) lies on \mathbb{C} . The gradient of the curve at A is 16.

Find the y coordinate of the point on the curve whose x coordinate is 3. Show clear algebraic working.

[6 marks]

Question 8

A particle ${\it P}$ is moving along a straight line. The fixed point ${\it O}$ lies on the line.

At time t seconds $(t \ge 0)$, the displacement of P from O is s metres where

 $s = t^3 - 9t^2 + 33t - 6$

Find the minimum speed of P.

.....m/s

[5 marks]

Question 9a

ABCED is a five-sided shape.

 $AB = x \operatorname{cm} BC = y \operatorname{cm}$

The perimeter of ABCED is 100 cm. The area of ABCED is $R \text{ cm}^2$

Show that $R = \frac{x}{4} \left(200 - \left[6 - \sqrt{3} \right] x \right)$

[3 marks]

Question 9b

(i)

Find the value of x for which R has its maximum value.

Give your answer in the form $\frac{p}{q-\sqrt{3}}$ where p and q are integers.

x =[2]

(ii) Explain why the maximum value of R is given by this value of x.

[1]

[3 marks]

Question 10

A particle moves along a straight line. The fixed point O lies on this line. The displacement of the particle from O at time t seconds , $t \ge 0$, is s metres where

$$s = t^3 + 4t^2 - 5t + 7$$

At time T seconds the velocity of P is V m/s where $V \ge -5$

Find an expression for T in terms of V.

Give your expression in the form $\frac{-4 + \sqrt{k + mV}}{3}$ where k m and are integers to be found.

T =

[6 marks]